首页   ·   旧站栏目   ·   cs   ·   正文

【视点】刘成林:模式识别急需借鉴脑和神经科学

发布时间:2016-07-27浏览量:644

刘成林表示,目前由于深度学习结合大数据所提供的强大功能,使得人工智能领域在图像识别、语音识别等方面的精度得到了大幅提高。但是这种高精度过于依赖大数据训练,且学习过程很不灵活。他举例说,通常需要同时用大量有类别标记的训练样本来训练深度神经网络,而不能像人脑那样从少量样本开始学习,并在有标记或无标记混合数据的感知过程中渐进学习,达到高的识别精度。

另外,刘成林解释说,现在的模式识别和智能系统在识别的可解释性,如对模式结构和语义的解释,说明为什么是或者不是某一类别以及鲁棒性,即对模糊模式和噪声模式、信息缺失的稳定性等方面表现明显不足。而小样本泛化性、自适应性、可解释性、鲁棒性恰恰又是人脑的长处。因此,模式识别学者急需从脑科学和神经科学上寻找新的借鉴,发展新的类人感知和认知机理的模式识别学习理论与方法。

借鉴脑与神经科学研究的成果,将脑神经结构和信息处理机制融入未来信息与智能系统,已经成为国际学术与产业界发展的趋势。欧盟与美国相继推出的脑计划中,都包含了脑模拟与类脑智能研究的探索。”在刘成林看来,如今的类脑智能研究包括四个研究方向:一是借鉴脑科学研究成果,建立人类脑神经结构的模拟计算系统,可以同时促进感知、认知、学习等智能计算模型和神经科学研究的发展;二是受脑信息处理机制启发,研究基于类脑信息处理机制,同时结合深度学习和大数据的多模态信息处理和语义理解;三是通过类脑智能研究,提升机器人的智能化程度,包括智能感知、决策、学习和感知协同的灵巧动作能力;四是人机协同和智能交互的研究,使机器在交互中快速学习知识和技能,并通过人机协同结合人与机器的长处共同完成复杂的任务。 原载于《中国科学报》2016年7月27日