21. Kang, X., Wang, J., & Li, C. (2019). Exposing the Underlying Relationship of Cancer Metastasis to Metabolism and Epithelial-Mesenchymal Transitions. Iscience, 21, 754-772. Exposing the Underlying Relationship of Cancer Metastasis to Metabolism and Epithelial-Mesenchymal Transitions.pdf
22. Katrancha, S., Shaw, J., Zhao, A., Myers, S., Cocco, A., Jeng, A., Zhu, M., Pittenger, C., Greer, C., Carr, S., Xiao, X., & Koleske, A. (2019). Trio Haploinsufficiency Causes Neurodevelopmental Disease-Associated Deficits. Cell Reports, 26(10), 2805-2817. Trio Haploinsufficiency Causes Neurodevelopmental Disease-Associated Deficits.pdf
23. Kung, Y.C., Li, C.W., Chen, S., Chen, S.J., Lo, H.Y., Lane, T., Biswal, B., Wu, C., & Lin, C.P. (2019). Instability of brain connectivity during nonrapid eye movement sleep reflects altered properties of information integration. Human Brain Mapping, 40(11), 3192-3202. Instability of brain connectivity during nonrapid eye movement sleep reflects altered properties of information integration.pdf
24. Lai, S.Y.; Jia, L.H.; Subramanian, B.; Pan, S.J.; Zhang, J.L.; Dong, Y.Q.; Chen, W.H; Zhao, X.M. (2020). Mmge: a database for human metagenomic extrachromosomal mobile genetic elements. Nucleic Acids Research. Mmge a database for human metagenomic extrachromosomal mobile genetic elements..pdf
25. Le, O.Y., Zhang, X.F., Zhao, X.M., Wang, D., Wang, F., Lei, B., & Yan, H. (2019). Joint Learning of Multiple Differential Networks With Latent Variables. Ieee Transactions on Cybernetics, 49(9), 3494-3506. Joint Learning of Multiple Differential Networks With Latent Variables.pdf
26. Li, C., & Ye, L. (2019). Landscape and flux govern cellular mode-hopping between oscillations. Journal of Chemical Physics, 151(17). Landscape and flux govern cellular mode-hopping between oscillations.pdf
27. Li, X., Abou Tayoun, A., Song, Z., Dau, A., Rien, D., Jaciuch, D., Dongre, S., Blanchard, F., Nikolaev, A., Zheng, L., Bollepalli, M., Chu, B., Hardie, R., Dolph, P., & Juusola, M. (2019). Ca2+-Activated K+ Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information. Journal of Neuroscience, 39(36), 7132-7154. Ca2+-Activated K+ Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information.pdf
28. Lin, Z., Lu, W., & Chen, T. (2019). eta(t)-consensus of multi-agent systems with directed graphs via event-triggered principles. Neurocomputing, 339, 1-9.
29. Liu, Z., Rolls, E., Liu, Z., Zhang, K., Yang, M., Du, J., Gong, W., Cheng, W., Dai, F., Wang, H., Ugurbil, K., Zhang, J., & Feng, J. (2019). Brain annotation toolbox: exploring the functional and genetic associations of neuroimaging results. Bioinformatics, 35(19), 3771-3778. Brain annotation toolbox exploring the functional and genetic associations of neuroimaging results..pdf
30. Luo, F., Wang, M., Liu, Y., Zhao, X.M., & Li, A. (2019). DeepPhos: prediction of protein phosphorylation sites with deep learning. Bioinformatics, 35(16), 2766-2773. DeepPhos prediction of protein phosphorylation sites with deep learning.pdf
31. Luo, H., Huang, Y., Xiao, X., Dai, W., Nie, Y., Geng, X., Green, A., Aziz, T., & Wang, S. (2020). Functional dynamics of thalamic local field potentials correlate with modulation of neuropathic pain. European Journal of Neuroscience, 51(2), 628-640. Functional dynamics of thalamic local field potentials correlate with modulation of neuropathic pain. European J of Neuroscience.pdf
32. Luo, Q., Chen, Q., Wang, W., Desrivieres, S., Quinlan, E., Jia, T., Macare, C., Robert, G., Cui, J., Guedj, M., Palaniyappan, L., Kherif, F., Banaschewski, T., Bokde, A., Buechel, C., Flor, H., Frouin, V., Garavan, H., Gowland, P., Heinz, A., Ittermann, B., Martinot, J.L., Artiges, E., Paillere-Martinot, M.L., Nees, F., Orfanos, D., Poustka, L., Froehner, J., Smolka, M., Walter, H., Whelan, R., Callicott, J., Mattay, V., Pausova, Z., Dartigues, J.F., Tzourio, C., Crivello, F., Berman, K., Li, F., Paus, T., Weinberger, D., Murray, R., Schumann, G., Feng, J., Barker, G., Bromberg, U., Millenet, S., Lemaitre, H., & Consortium, I. (2019). Association of a Schizophrenia-Risk Nonsynonymous Variant With Putamen Volume in Adolescents A Voxelwise and Genome-Wide Association Study. Jama Psychiatry, 76(4), 435-445. Association of a Schizophrenia-Risk Nonsynonymous Variant With Putamen Volume in Adolescents.pdf
33. Pan, C., Jiang, Y., Zhu, Q., & Lin, W. (2019). Emergent dynamics of coordinated cells with time delays in a tissue. Chaos, 29(3).
34. Pang, H., Dang, X., Ren, Y., Zhuang, D., Qiu, T., Chen, H., Zhang, J., Ma, N., Li, G., Zhang, J., Wu, J., & Feng, X. (2019). 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis. Journal of Magnetic Resonance Imaging, 50(1), 209-220.
35. Peng, S., Cui, Y., Yang, S., Su, W., Zhang, X., Zhang, T., Liu, W., & Zhao, X.M. (2019). A CPU/MIC Collaborated Parallel Framework for GROMACS on Tianhe-2 Supercomputer. Ieee-Acm Transactions on Computational Biology and Bioinformatics, 16(2), 425-433. A CPUMIC collaborated parallel framework for GROMACS on tianhe-2 supercomputer.pdf
36. Protachevicz, P., Borges, F., Lameu, E., Ji, P., Iarosz, K., Kihara, A., Caldas, L., Szezech Jr, J., Baptiste, M., Macau, E., Antonopoulos, C., Batista, A., & Kurthsw, J. (2019). Bistable Firing Pattern in a Neural Network Model. Frontiers in Computational Neuroscience, 13.
37. Qu, G., Fan, B., Fu, X., & Yu, Y. (2019). The Impact of Frequency Scale on the Response Sensitivity and Reliability of Cortical Neurons to 1/f(beta) Input Signals. Frontiers in Cellular Neuroscience, 13.
38. Ren, Y., Luo, Q., Gong, W., Lu, W., & Acm (2019). Transfer Learning Models on Brain Age Prediction. Third International Symposium on Image Computing and Digital Medicine.
39. Rolls, E., Cheng, W., Gong, W., Qiu, J., Zhou, C., Zhang, J., Lv, W., Ruan, H., Wei, D., Cheng, K., Meng, J., Xie, P., & Feng, J. (2019). Functional Connectivity of the Anterior Cingulate Cortex in Depression and in Health. Cerebral Cortex, 29(8), 3617-3630. Functional Connectivity of the Anterior Cingulate Cortex in Depression and in Health..pdf
40. Rolls, E., Zhou, Y., Cheng, W., Gilson, M., Deco, G., & Feng, J. (2020). Effective connectivity in autism. Autism Research, 13(1), 32-44. Effective Connectivity in Autism.pdf